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In{1] we integrated the Hamilton-Jacobi equation
as as
”5:""1“( ar ) +F=0

where § is an action function and F is a given function of the two variables r and ¢. The
total integral of this equation was determined with certain conditions imposed on the func-
tion F., We shall now extend the method of [1] to the case of several variables.

We shall attempt to find the solution of the Hamilton-Jacobi equation
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in the form
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Let us introduce the new variables x, = ¢, f, %, = g, fi..., %, = q,, f; here f= f(t) is any
doubly differentiable function of ¢, Snbautntmg (2? into {1}, we obtam
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Let us require that the coefficients of’&S1 /8x, equal zero. We then have
n
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Making use of this expression, we tranaform Eq.(3) into
nﬂ . dl'u) Ao 1 % 2 [ df\2]_
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The variables in this equation are aeparable if
F=710(m)+ ¥ () + ... +%n (@) -0+ (6)
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Here (/11 (= 1)""' ¢’n ("n)' 7 (¢) are arbitrary functions. The total integral of Eq. (1) in the
case where the function F satisfies condition (6) is given by
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where CI, Cz""' C, + Aare arbitrary constants. As is evident from the latter expression,

the solution of Hamilton-Jacobi equation (1) obtained by the proposed method generally
cannot be obtained by separating variables.
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